skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mao, Songtao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Random linear codes (RLCs) are well known to have nice combinatorial properties and near-optimal parameters in many different settings. However, getting explicit constructions matching the parameters of RLCs is challenging, and RLCs are hard to decode efficiently. This motivated several previous works to study the problem of partially derandomizing RLCs, by applying certain operations to an explicit mother code. Among them, one of the most well studied operations is random puncturing, where a series of works culminated in the work of Guruswami and Mosheiff (FOCS’ 22), which showed that a random puncturing of a low-biased code is likely to possess almost all interesting local properties of RLCs. In this work, we provide an in-depth study of another, dual operation of random puncturing, known as random shortening, which can be viewed equivalently as random puncturing on the dual code. Our main results show that for any small , by starting from a mother code with certain weaker conditions (e.g., having a large distance) and performing a random (or even pseudorandom) shortening, the new code is -biased with high probability. Our results hold for any field size and yield a shortened code with constant rate. This can be viewed as a complement to random puncturing, and together, we can obtain codes with properties like RLCs from weaker initial conditions. Our proofs involve several non-trivial methods of estimating the weight distribution of codewords, which may be of independent interest. 
    more » « less